Autophagy: an adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion‐associated cardiac arrhythmias
نویسندگان
چکیده
Oxidative stress placed on tissues that involved in pathogenesis of a disease activates compensatory metabolic changes, such as DNA damage repair that in turn causes intracellular accumulation of detritus and 'proteotoxic stress', leading to emergence of 'senescent' cellular phenotypes, which express high levels of inflammatory mediators, resulting in degradation of tissue function. Proteotoxic stress resulting from hyperactive inflammation following reperfusion of ischaemic tissue causes accumulation of proteinaceous debris in cells of the heart in ways that cause potentially fatal arrhythmias, in particular ventricular fibrillation (VF). An adaptive response to VF is occurrence of autophagy, an intracellular bulk degradation of damaged macromolecules and organelles that may restore cellular and tissue homoeostasis, improving chances for recovery. Nevertheless, depending on the type and intensity of stressors and inflammatory responses, autophagy may become pathological, resulting in excessive cell death. The present review examines the multilayered defences that cells have evolved to reduce proteotoxic stress by degradation of potentially toxic material beginning with endoplasmic reticulum-associated degradation, and the unfolded protein response, which are mechanisms for removal from the endoplasmic reticulum of misfolded proteins, and then progressing through the stages of autophagy, including descriptions of autophagosomes and related vesicular structures which process material for degradation and autophagy-associated proteins including Beclin-1 and regulatory complexes. The physiological roles of each mode of proteotoxic defence will be examined along with consideration of how emerging understanding of autophagy, along with a newly discovered regulatory cell type called telocytes, may be used to augment existing strategies for the prevention and management of cardiovascular disease.
منابع مشابه
Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling
The traditional Chinese medicine Danshensu (DSS) has a protective effect on cardiac ischaemia/reperfusion (I/R) injury. However, the molecular mechanisms underlying the DSS action remain undefined. We investigated the potential role of DSS in autophagy and apoptosis using cardiac I/R injury models of cardiomyocytes and isolated rat hearts. Cultured neonatal rat cardiomyocytes were subjected to ...
متن کاملPreconditioning effects of oxytocin in reducing cardiac arrhythmias in a rat heart regional ischemia-reperfusion model
Abstract Introduction: Occurrence of cardiac arrhythmias and myocardial infarction are two main deleterious events that are caused by ischemia-reperfusion (IR) injury in the heart. Cardiac preconditioning represents the most potent method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) cardioprotective effect...
متن کاملEffects of 40-chlorodiazepam on cellular excitation–contraction coupling and ischaemia–reperfusion injury in rabbit heart
Aims Recent evidence indicates that the activity of energy-dissipating ion channels in the mitochondria can influence the susceptibility of the heart to ischaemia–reperfusion injury. In this study, we describe the effects of 40-chlorodiazepam (4-ClDzp), a well-known ligand of the mitochondrial benzodiazepine receptor, on the physiology of both isolated cardiomyocytes and intact hearts. Methods ...
متن کاملEffects of 4'-chlorodiazepam on cellular excitation-contraction coupling and ischaemia-reperfusion injury in rabbit heart.
AIMS Recent evidence indicates that the activity of energy-dissipating ion channels in the mitochondria can influence the susceptibility of the heart to ischaemia-reperfusion injury. In this study, we describe the effects of 4'-chlorodiazepam (4-ClDzp), a well-known ligand of the mitochondrial benzodiazepine receptor, on the physiology of both isolated cardiomyocytes and intact hearts. METHOD...
متن کاملComparison of the efficiency of Na+/Ca2+ exchanger or Na+/H+ exchanger inhibition and their combination in reducing coronary reperfusion-induced arrhythmias.
During ischaemia/reperfusion, the rise in [Na(+)](i), induced by simultaneous depression of the Na(+)/K(+)-ATPase and activation of the Na(+)/H(+) exchanger (NHE), shifts the Na(+)/Ca(2+) exchanger (NCX) into reverse transport mode, resulting in Ca(2+)(i)overload, which is a critical factor in enhancing the liability to cardiac arrhythmias. The inhibition of NHE, and recently NCX has been sugge...
متن کامل